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Abstract

We study the exact decoherence dynamics of the entangled squeezed state
of two single-mode optical fields interacting with two independent and
uncorrelated environments. We analyze in detail the non-Markovian effects
on the entanglement evolution of the initially entangled squeezed state for
different environmental correlation time scales. We find that the environments
have dual actions on the system: backaction and dissipation. In particular,
when the environmental correlation time scale is comparable to the time scale
for significant change in the system, the backaction would counteract the
dissipative effect. Interestingly, this results in the survival of some residual
entanglement in the final steady state.

PACS numbers: 03.65.Yz, 03.67.Mn, 03.67.–a

1. Introduction

Studies on the decoherence dynamics of open quantum systems are of great importance to
the field of quantum information science [1]. Any realistic analysis of quantum information
protocols should take into account the decoherence effect of the environment. In many
quantum communication and computation schemes, information is transmitted using photons.
For instance, the first experimental verification of quantum teleportation [2] used pairs of
polarization entangled photons to transfer the polarization state of one photon onto another
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[3]. Within a year, unconditional quantum teleportation of optical fields was demonstrated
experimentally using squeezed-state entanglement [4, 5]. Given their central role in these
schemes and many others, much work has been carried out on the decoherence dynamics of
optical fields. In particular, several authors have studied the continuous variable entanglement
of optical fields (see, for instance, [6–12]).

Conventional approaches not only treat the interactions between the quantum system S
of interest and its environment E perturbatively, they also assume that the environmental
correlation time τE is small compared to the time scale τ0 for significant change in S.
These yield approximate equations of motion, i.e. master equations, under the Born–Markov
approximation [13, 14]. Indeed, many studies on the entanglement dynamics of the continuous
variable system relied on this approximation [6–8]. However, it is evident from recent
experiments (see, for instance, [15–17]), that there are many physically relevant situations
where the Markovian assumption does not hold, and a non-Markovian treatment of the open
system dynamics is necessary. So, there has been an increasing interest in the understanding
of the decoherence effect of the open quantum system going beyond the Born–Markovian
approximation in the last decades [14, 18].

Very recently, some phenomenological models on non-Markovian entanglement dynamics
of optical fields have been investigated [9–11]. It was found that in contrast to the monotonic
decrease of entanglement over time in Born–Markovian entanglement dynamics [6–8], there
are transient entanglement oscillations in non-Markovian ones. These oscillations are caused
by the backactions of the environments on their respective local quantum systems [10, 11]. The
backaction, characteristic of non-Markovian dynamics, means that the environments with their
states changed due to interactions with the systems, in turn, exert their dynamical influences
back on the systems.

In this paper we consider the exact decoherence dynamics of the continuous variable
entangled squeezed state of the two single-mode optical fields, S1 and S2, that are spatially
separated. Each optical field, Sk , interacts with its own environment Ek (k = 1, 2). E1 and
E2 are independent and uncorrelated. We study the exact entanglement dynamics of the two
optical-field system for different τE’s in comparison with τ0, and analyze when the system
dynamics will exhibit novel non-Markovian effects, and provide a detailed description of
these. To this end, we use the influence-functional formalism [19, 20], developed explicitly
in [12, 21, 22]. Our results show that besides the short-time oscillations, the non-Markovian
effect can affect the long-time behavior of the system dynamics and the steady state as well.
In particular, when τE is comparable to τ0, we find that the backaction effects counteract the
dissipative effects of E1E2 on S1S2 respectively. This leads to there being some nonzero
residual entanglement in the steady state.

Our paper is organized as follows. In section 2, we introduce a model of the two single-
mode optical fields in two independent and uncorrelated environments, and outline the exact
dynamics that was derived in detail in [22]. In section 3, using logarithmic negativity as an
entanglement measure of continuous variable states, we discuss the entanglement dynamics
of the entangled squeezed state. Section 4 presents the numerical results of the entanglement
dynamics, where we analyze explicitly the non-Markovian effect of the environments on the
system for different τE’s in comparison with τ0. Finally, we conclude in section 5.

2. The total Hamiltonian and exact reduced system decoherence dynamics

The total Hamiltonian of the system S1S2 plus environment E1E2 is given by

H = HS + HE + HI, (1)
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where

HS =
2∑

k=1

h̄ωka
†
kak,

HE =
2∑

k=1

∑
l

h̄ωklb
†
klbkl, (2)

HI =
2∑

k=1

∑
l

h̄
(
gkla

†
kbkl + g∗

klakb
†
kl

)
are, respectively, the Hamiltonian of the two optical fields, the two independent environments
and the interactions between them. The operators ak and a

†
k (k = 1, 2) are respectively

the annihilation and creation operators of the kth optical mode with frequency ωk . The two
independent environments are modeled, as usual, by two sets of harmonic oscillators described
by the annihilation and creation operators bkl and b

†
kl . The coupling constants between the

kth optical field and its environment are given by gkl . Currently, most quantum optical
experiments are performed at low temperatures and under the vacuum condition. In this case,
vacuum fluctuations are the main source of decoherence. Therefore, we take the environments
to be at zero temperature throughout this paper.

Since we are only interested in the dynamics of S1S2, we like to eliminate the degrees of
freedom of E1E2. The influence-functional theory of Feynman and Vernon [19] enables us to
do that exactly. By expressing the forward and backward evolution operators of the density
matrix of the system S1S2 plus environment E1E2 as a double path integral in the coherent-
state representation [23], and performing the integration over the degrees of freedom of E1E2,
we incorporate all the environmental effects on S1S2 in a functional integral named influence
functional [12, 19, 22]. The reduced density matrix, which fully describes the dynamics of
S1S2 is given by

ρ(ᾱf ,α′
f ; t) =

∫
dμ(αi ) dμ(α′

i )J (ᾱf ,α′
f ; t |ᾱi ,α

′
i; 0) × ρ(ᾱi ,α

′
i; 0), (3)

where ρ(ᾱf ,α′
f ; t) = 〈αf |ρ(t)|α′

f 〉 is the reduced density matrix expressed in the coherent-
state representation and J (ᾱf ,α′

f ; t |ᾱi ,α
′
i; 0) is the propagating function. In the derivation

of equation (3), we have used the coherent-state representation

|α〉 =
2∏

k=1

|αk〉, |αk〉 = exp
(
αka

†
k

)|0k〉, (4)

which are the eigenstates of annihilation operators, i.e. ak|αk〉 = αk|αk〉 and obey the
resolution of identity,

∫
dμ(α)|α〉〈α| = 1 with the integration measures defined as

dμ(α) = ∏
l e−ᾱlαl dᾱldαl

2πi
; ᾱ denotes the complex conjugate of α.

The time evolution of the reduced density matrix is determined by the propagating
function J (ᾱf ,α′

f ; t |ᾱi ,α
′
i; 0). The propagating function is expressed as the path integral

governed by an effective action which consists of the free actions of the forward and
backward propagators of the optical-field system and the influence functional obtained from
the integration of environmental degrees of freedom. After evaluation of the path integral, the
final form of the propagating function is obtained as follows:

J (ᾱf ,α′
f ; t |ᾱi ,α

′
i; 0) = exp

{
2∑

k=1

[uk(t)ᾱkf αki + ūk(t)ᾱ
′
kiα

′
kf + [1 − |uk(t)|2] ᾱ′

kiαki]

}
,

(5)
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where uk(τ ) satisfies

u̇k(τ ) + iωkuk(τ ) +
∫ τ

0
μk(τ − τ ′)uk(τ

′) = 0 (6)

with μk(x) ≡ ∑
l e−iωlx |gkl|2 being used. Combining equation (5), we can get the exact

time-dependent state from any initial state by the evaluation of the integration in equation (3).
To compare with the conventional master equation description of such system, we

now derive a master equation from the above results. After taking the time derivative to
equation (3) and recalling the explicit form of equation (5), we can derive an exact master
equation

ρ̇(t) = − i

h̄
[H ′(t), ρ(t)] +

2∑
k=1

�k(t)
[
2akρ(t)a

†
k − a

†
kakρ(t) − ρ(t)a

†
kak

]
, (7)

where

H ′(t) =
2∑

k=1

h̄�k(t)a
†
kak (8)

is the modified Hamiltonian of the two optical modes and

u̇k(t)

uk(t)
≡ −�k(t) − i�k(t). (9)

Equation (7) is the exact master equation for the optical-field system. �k(t) plays the role of a
time-dependent shifted frequency of the kth optical field. �k(t) represents the corresponding
time-dependent decay rate of the field. We emphasize that the derivation of the master equation
goes beyond the Born–Markovian approximation and contains all the backactions between
the system and the environments self-consistently. All the non-Markovian character resides
in the time-dependent coefficients of the exact master equation.

The time-dependent coefficients in the exact master equation, determined by equation (9),
essentially depend on the so-called spectral density, which characterizes the coupling strength
of the environment to the system with respect to the frequencies of the environment. It is
defined as Jl(ω) = ∑

k |glk|2δ(ω − ωl). In the continuum limit the spectral density may have
the form

Jk(ω) = ηkω
( ω

ωc

)n−1
e− ω

ωc , (10)

where ωc is an exponential cutoff frequency, and ηk is a dimensionless coupling constant
between Sk and Ek . The environment is classified as Ohmic if n = 1, sub-Ohmic if 0 < n < 1
and super-Ohmic for n > 1 [20, 24]. Different spectral densities manifest different non-
Markovian decoherence dynamics.

We note that our exact master equation reduces to the conventional master equation under
the relevant Markov approximation. The coefficients in the master equation (7) become time
independent [22]

�k(t) = πJk(ωk), �k(t) = ωk − P
∫ +∞

0

J (ω)dω

ω − ωk

, (11)

where P denotes the Cauchy principal value. The coefficients in equations (11) are precisely
the corresponding ones in the Markovian master equation of the optical system [13].
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3. The non-Markovian entanglement dynamics of the entangled squeezed state

Initially at time t = 0, S1S2 is in an entangled squeezed state. The entangled two-mode
squeezed state is defined as the vacuum state acted on by the two-mode squeezing operator

|ψ(0)〉 = exp
[
r
(
a1a2 − a

†
1a

†
2

)]|00〉, (12)

where r is the squeezing parameter. In the coherent-state representation, this initial state is
given by

ρ(ᾱi ,α
′
i; 0) = exp[−tanh r(ᾱ1i ᾱ2i + α′

1iα
′
2i )]

cosh2 r
. (13)

The state approaches the ideal Einstein–Podolsky–Rosen (EPR) state [25] in the limit of infinite
squeezing (r → ∞). The traditional way to generate the entangled two-mode squeezed
state is via the nonlinear optical process of parametric down-conversion [26]. Recently, a
microwave cavity QED-based scheme to generate such states has also been proposed [27].
After generating the entangled state given by equation (12), the two cavity fields are then
propagated, respectively, to the two locations separated between the sender and the receiver.
A quantum channel is thus established through the entangled two-mode squeezed state and is
ready for teleporting unknown optical coherent states [4, 5].

At t > 0, due to interactions with E1E2, |ψ(0)〉 evolves to a mixed state. A straightforward
way to obtain the time-dependent mixed state is by integrating the propagating function over
the initial state of equation (3). Then the time-evolution solution of the reduced density matrix
can be obtained exactly as

ρ(ᾱf ,α′
f ; t) = a exp

⎡
⎣∑

k 	=k′

(
b

2
ᾱkf ᾱk′f + cᾱkf α′

kf +
b∗

2
α′

kf α′
k′f

)⎤
⎦ , (14)

where

a = 1

cosh2 |r|[1 − tanh2 |r|(1 − |u(t)|2)2]
, (15)

b = −tanh |r|u(t)2

1 − tanh2 |r|(1 − |u(t)|2)2
, (16)

c = tanh2 |r|(1 − |u(t)|2)|u(t)|2
1 − tanh2 |r|(1 − |u(t)|2)2

. (17)

To measure the entanglement in the continuous variable system, one generally uses the
logarithmic negativity [28]. The logarithmic negativity of a bipartite system was introduced
originally as

EN = log2

∑
i

|λ−
i |, (18)

where λ−
i is the negative eigenvalue of ρTi , and ρTi is a partial transpose of the bipartite

state ρ with respect to the degrees of freedom of the ith party. This measure is based on the
Peres–Horodecki criterion [29, 30] that a bipartite quantum state is separable if and only if its
partially transposed state is still positive.

For the continuous variable (Gaussian-type) bipartite state, its density matrix is
characterized by the covariance matrix defined as the second moments of the quadrature
vector X = (x1, p1, x2, p2),

Vij = 〈XiXj + XjXi〉
2

, (19)
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where Xi = Xi − 〈Xi〉, and xi = ai+a
†
i√

2
, pi = ai−a

†
i

i
√

2
. The canonical commutation relations

take the form as [Xi,Xj ] = iUij , with U = (
J 0
0 J

)
and J = ( 0 1

−1 0

)
defining the symplectic

structure of the system. The property of the covariance matrix V is fully determined by its
symplectic spectrum ν = (ν1, ν2), with ±νi (νi > 0) the eigenvalues of the matrix: iUV . The
uncertainty principle exerts a constraint on νi such that νi � 1

2 [31]. Thus the Peres–Horodecki
criterion for the continuous variable state can be rephrased as the state being separable if and
only if the uncertainty principle, V + i

2U � 0, is still obeyed by the covariance matrix under
the partial transposition with respect to the degrees of freedom of a specific subsystem [32].
In terms of phase space, the action of partial transposition amounts to a mirror reflection with
respect to one of the canonical variables of the related subsystem. For instance, Ṽ = �V �,
and � = diag(1, 1, 1,−1) is the partial transposition with respect to the second subsystem.
If a Gaussian-type bipartite state is nonseparable, the covariance matrix Ṽ will violate the
uncertainty principle and its symplectic spectrum ν̃ = (ν̃1, ν̃2) will fail to satisfy the constraint
ν̃i � 1

2 . The logarithmic negativity is then used to quantify this violation as [28]

EN = max{0,− log2(2ν̃min)}, (20)

where ν̃min is the smaller one of the two symplectic eigenvalues ν̃i . It is evident from
equation (20) that, if Ṽ obeys the uncertainty principle, i.e., ν̃i � 1

2 , then EN(ρ) = 0, namely,
the state is separable. Otherwise, it is entangled. Therefore, the symplectic eigenvalue ν̃min

encodes a qualitative feature of the entanglement for an arbitrary continuous variable bipartite
state.

With this entanglement measure at hand, we now study the entanglement dynamics of the
squeezed-state quantum channel in our model. From the time-dependent state, the covariance
matrix for the optical field can be calculated straightforwardly,

V =

⎛
⎜⎜⎜⎜⎝

y(1+d)

2(1−d)2 0 aRe[b]
x

aIm[b]
x

0 y(1+d)

2(1−d)2
aIm[b]

x

−aRe[b]
x

aRe[b]
x

aIm[b]
x

y(1+d)

2(1−d)2 0
aIm[b]

x

−aRe[b]
x

0 y(1+d)

2(1−d)2

⎞
⎟⎟⎟⎟⎠ , (21)

where x = [(1 − c)2 − |b|2]2, y = a
1−c

and d = c + |b|2
1−c

. And the logarithmic negativity
EN(t) can also be obtained exactly from equation (20). It is easy to verify that the initial
entanglement is EN(0) = 2r

ln 2 .

4. Numerical results and discussions

In the following, we analyze explicitly the exact decoherence dynamics of the entangled
squeezed state of S1S2 under the influence of E1E2. For simplicity, we assume from here on
that the two optical fields are identical, i.e., ω1 = ω2 ≡ ω0, and they interact with the same
strength, g1l = g2l ≡ gl , with their individual environments. For definiteness, we consider
both E1 and E2 to have Ohmic spectral density. The environmental correlation time τE in
this case is roughly inversely proportional to the cutoff frequency ωc in equation (10), i.e.,
τE � 1/ωc [18]. It is emphasized that the cutoff frequency ωc, which is originally introduced
to eliminate infinities in frequency integrations, therefore also determines if the dynamics of
the open system S is Markovian or non-Markovian. Our non-perturbatively derived exact
results allow us to explore all these possibilities.

In figure 1, we plot the numerical results of the decay rate �(t) and logarithmic negativity
EN(t) when τE � τ0. The positivity of �(t) throughout the whole evolution process
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Figure 1. Damping rate �(t) and logarithmic negativity EN(t) for the entangled squeezed state as
functions of dimensionless quantity ω0t and their corresponding Markovian results (dashed lines).
The parameters ωc/ω0 = 50.0, η = 0.1 and r = 1.0 are used in the numerical calculation.
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Figure 2. Damping rate �(t) and logarithmic negativity EN(t) for the entangled squeezed state as
functions of dimensionless quantity ω0t and their corresponding Markovian results (dashed lines).
The parameters ωc/ω0 = 1.0, η = 5.0 and r = 1.0 are used in the numerical calculation.

guarantees the monotonic decrease of EN(t). Accordingly, the entangled squeezed state
eventually evolves to a product state, namely the ground state of the system: ρg = |00〉〈00|.
Clearly, in this case, the backactions of E1E2 have a negligible effect on the dynamics
of S1S2, and we say the system dynamics is mainly governed by the dissipative effect of
the environments. There is thus no qualitative difference between the exact entanglement
dynamics and the Markovian results. Quantitatively, however, we note that for t < τE , the
distinctive increase of �(t) results in EN(t) decreasing rapidly. This non-Markovian effect
only shows up in a very short time scale. In fact, for t > τE, �(t) decreases and approaches
gradually to a constant value as t approaches τ0, and the rate of decrease of EN(t) decreases.

Figure 2 shows �(t) and EN(t) when τE = τ0. In this case, the backactions of E1E2

have a considerable impact on the dynamics of S1S2, and the Markovian approximation is not
applicable. First, we note that �(t) can take negative values. Physically, this corresponds
to the systems reabsorbing photons from the environments, which leads to an increase in
the photon number of the systems [14]. These negative decay rates provide evidences for
backactions in non-Markovian dynamics [34]. Secondly, we observe that �(t) approaches
zero asymptotically. Both results clearly differ from the Markovian ones. Consequently,
EN(t) presents distinctive behaviors that are absent in the Markovian results. First, due to
the negative decay rates, EN(t) shows oscillations. We must emphasize that these oscillations
are fundamentally different from the transient entanglement oscillations previously obtained
when the two optical fields interact with a common environment [12]. They are caused by the
backactions of the environments on their respective local optical fields and are characteristic of
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Figure 3. Damping rate �(t) and logarithmic negativity EN(t) for the entangled squeezed state as
functions of dimensionless quantity ω0t and their corresponding Markovian results (dashed lines).
The parameters ωc/ω0 = 0.2, η = 5.0 and r = 1.0 are used in the numerical calculation.

non-Markovian dynamics. Similar oscillations have been obtained in a system of two two-level
atoms in two separated damping cavities [33]. Secondly, and more interestingly, we find that
there is some residual entanglement left in the steady state. From previous studies [9, 10, 12],
one would have concluded that non-Markovian effects only show up in short-time dynamics.
Our results, however, clearly show on the contrary that non-Markovian effects can also have
an influence on the long-time behavior of the system dynamics and the final steady state of
the system. This counterintuitive behavior can be explained with the fact that the dissipative
influence on the entanglement dynamics by the environments is strongly counteracted by the
effect due to their backactions. Consequently, the decay of the entanglement ceases when
the system evolves to some steady state, which is not the ground state ρg .

The results when τE  τ0 are shown in figure 3; a situation considered in [11]. Due to
extremely long memory of the environments, the backactions on the systems are so strong that
they govern the decoherence dynamics. As a result, �(t) and hence EN(t) oscillate over a very
long duration. These oscillations persist even as the state approaches the ground state. The
‘equilibrium’ position for the oscillation of �(t) is not at zero, but a small positive value. This
positivity means the systems dynamics will experience a weak dissipation, which is verified
by the time evolution of EN(t) in figure 3.

In summary, we have studied the exact entanglement dynamics of the two optical-field
system for different τE’s in comparison with τ0. Specifically, we have analyzed when
the system dynamics will exhibit novel non-Markovian effects, and provided a detailed
description of these.

5. Conclusions

We have applied the influence-functional method of Feynman and Vernon to investigate the
exact entanglement dynamics of the two single-mode optical fields S1S2 coupled to two
independent and uncorrelated environments E1E2. From our analytical and numerical results,
it is seen that E1E2 exert two competing influences on our system. One effect, D, is dissipative
and is responsible for the decoherence of S1S2. The other, B, is due to the backactions of E1E2

on S1S2. The degree of manifestations of D and B in the dynamics of S1S2 depends on τE in
comparison with τ0. For τE � τ0,D dominates and B only gives rise to a transient coherent
oscillation of S1S2. The state of S1S2 evolves to the ground state ρg , which is coincident with
the Markovian result. If τE = τ0, the near resonant interaction between S1S2 and E1E2 results
in D and B being comparable and counteract each other. These give rise to transient negative
decay rates and asymptotical zero decay rate. The state of S1S2 thus evolves asymptotically

8
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to some steady state, which is not the ground state ρg . Finally, when τE  τ0,B dominates
and governs the dynamics of S1S2. The decay rates of the system oscillate about some non-
negative equilibrium position over a very long duration. This slight positivity guarantees an
overall weak dissipative effect on the system dynamics. Therefore, the state of S1S2 eventually
approaches the ground state with the entanglement oscillation persisting on for a very long
time.

The theory we have established is a non-perturbative description of the exact decoherence
dynamics of a system of the two single-mode optical fields. It can serve as a useful basic
theoretical model in analyzing the non-Markovian decoherence dynamics of optical fields
employed in practical quantum information processing schemes. It should be noted that
although only the Ohmic spectral density is considered here, it is straightforward to generalize
our discussion to the non-Ohmic cases.

Acknowledgments

The work is supported by NUS Research Grant No. R-144-000-189-305. J H A also
thanks the financial support of the NNSF of China under Grant No. 10604025, and the
Fundamental Research Fund for Physics and Mathematics of Lanzhou University under Grant
No. Lzu05-02.

References

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge, UK:
Cambridge University Press)

[2] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Bouwmeester D, Pan J-W, Matter K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[4] Braunstein S L and Kimble H J 1998 Phys. Rev. Lett. 80 869
[5] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[6] Prauzner-Bechcicki J S 2004 J. Phys. A: Math. Gen. 37 L173
[7] J-H An, Wang S-J and Luo H-G 2005 J. Phys. A: Math. Gen. 38 3579
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